Developing and Implementing Adaptive Management Plans for Mitigation Sites

Ronald M. Thom

Staff Scientist Marine Sciences Laboratory, Pacific Northwest National Laboratory Sequim, WA

Presented at "Mitigation in Washington: Policy, Tools, and Practice" Washington Shoreline and Coastal Planners Group Meeting Keyport, Washington 11 June 2009

Pacific Nor NATIONAL LABORATORY

AM Defined and Some Objectives

- Learn by doing in a structured process to address key uncertainties facing critical decisions
- Critical decisions with significant uncertainty
- Objectives:
 - Improve performance toward goals
 - Reduce uncertainties
 - Drive decision
 - Save cost
 - Disseminate learning
 - Develop trust
 - Develop credibility
- Can be active, passive, or adaptive learning

Major Components and Steps (DOI Guidance; Williams et al. 2007)

Setup Phase

- Step 1 Stakeholder involvement
- Step 2 Objectives
- Step 3 Management actions
- Step 4 Models
- Step 5 Monitoring plans
- Iterative Phase
 - Step 6 Decision making
 - Step 7 Follow-up monitoring
 - Step 8 Assessment
 - Step 9 Iteration

Goal Model Evaluation Framework

Guiding Principles

- 1. Simple = not complex, easy to understand
- 2. Accurate
- 3. Timely
- 4. Relevant (to decisions and decision makers)
- 5. Feasible
- 6. "User friendly"
- 7. Serves key objectives = provides critical information to support continuation of the program
- 8. Has multiple (cumulative) benefits = is directly related to organization's mission; is complimentary with other similar efforts
- 9. "Transparent"

Some Definitions

- Goal = the purpose of the project
- Objective = specific task to be accomplished
- Management action = physical or other effort
- Performance metric^{*} = parameter used to indicate effect of actions
- Performance criterion^{*} = threshold value for the performance metric indicating task is accomplished
- Trigger = threshold value that initiates an action or decision
- Decision makers = those who decide what management actions to take and when

^{*}Requires sampling and analysis design and protocols

Models and Decision Making

- Link management actions to outcomes
- Conceptual
- Numerical
- Formalize what is known and what is not known
- Highlight critical uncertainties
- Evaluate tradeoffs of scenarios using models
- Structured Decisions
 - "Smart Choices" (Hammond, Keeney and Raiffa 1999)

Conceptual Model Example

Conceptual Model Example

Organizing Model *Net Ecosystem Improvement (NEI) Score*

Score = (Δ function) (area) (probability)

Score = (∆function) (area) (probability)

Level of disturbance Strategy employed Stochastic events Past results in system

Score = (Δ function) (area) (probability)

Habitat size Wetted area Channel area Channel edge Tidal prism

> Level of disturbance Strategy employed Stochastic events Past results in system

Score = (Δ function) (area) (probability)

Primary production Fish opportunity Fish capacity OM export Biodiversity

Habitat size Wetted area Channel area Channel edge Tidal prism

> Level of disturbance Strategy employed Stochastic events Past results in system

General Alternative Actions if System not Meeting Goals – Define and Use Triggers

Do nothing -

- System not old enough
- Anomalous, short-term disturbance
- Do something -
 - Implement one or more corrective actions
 - Conduct a study to determine problem
 - Supplement with new site
- Change the goal -
 - System is doing well enough, revised goal is acceptable
 - Alternate goal is better than original goal
 - Fixing system to meet goal would be cost-prohibitive

Need some way to track all projects in a common framework

Need some way to track all projects in a common framework

Need some way to track all projects in a common framework

Need some way to track all projects in a common framework

Practitioner Input: specify these three levels of development for site and function with a time line

Need some way to track all projects in a common framework

<u>Practitioner Input:</u> describe why the site and/or functions are not meeting their time line

General Alternative Actions if System not Meeting Goals

Do nothing
 System not old enough
 Anomalous, short-term disturbance

 Do something
 Implement one or more corrective actions
 Conduct a study to determine problem
 Supplement with new site

 Change the goal
 System is doing well enough, revised goal is acceptable
 Alternate goal is better than original goal

24

Fixing system to meet goal would be cost-prohibitive

General Alternative Actions if System not Meeting Goals

Do nothing -

- System not old enough
- Anomalous, short-term disturbance
- Do something -
 - Implement one or more corrective actions
 - Conduct a study to determine problem
 - Supplement with new site
- Change the goal -
 - System is doing well enough, revised goal is acceptable
 - Alternate goal is better than original goal
 - Fixing system to meet goal would be cost-prohibitive

Practitioner Input

Synthesis Products

Feedback to

- Stakeholders
- Practitioners
- Sponsors
- Public
- Other agencies
- Researchers
- Products
 - Maps
 - Results summaries data plots
 - Narratives
 - Recommendations

Example - *Eelgrass restoration at ferry terminals in Puget Sound*

- Need to expand and rebuild 20 terminals
- Eelgrass is at risk
- Goals
 - net ecosystem improvement
 - explore methods and technologies
 - provide guidance for future dock
- Directed research on requirements and specific stressors
- Planting and monitoring
 - Implement design alternatives
 - Overcompensate to provide net increase
 - Try some experimental actions, glass blocks, planting methods,

- Plot A: $y = -11.411x^2 + 19.152x + 45.289$ r = 0.779
- O Plot B: $y = -27.440x^2 + 22.517x + 208.062$ r = 0.714
- $Plot E: y = -13.192x^2 + 15.699x + 105.338$ r = 0.588

Criteria	Qualifier	Mitigation Performance Measure	Performance as of 2006	Meets Performance Measure
NO NET LOSS	All areas	Estimate of 26,906 shoots lost to construction	40,717 shoots	YES
Total Shoot Abundance (no. shoots)	All plots	56,402 shoots	40,717 shoots	NO ^(a)
Eelgrass Area (m ²)	All plots	3.9:1 (restored:lost)	5.9:1 (restored:lost)	YES
Eelgrass Area (m ²)	All plots (minus experimental plots)	3.9:1 (restored:lost)	4.6:1 (restored:lost)	YES
Kelp, Seaweed, and Rockfish Habitat	Pile collars and rock pile	Seaweeds, kelp and rockfish present within 3 years	Present (for 3 consecutive years)	YES

Some "Learning"

- Light requirements
- Light through glass blocks
- Among-site variation
- Issues with reference sites
- Depth vs density effect
- Climate variability effect
- Disturbances (erosion/deposition)
- Evaluation of 'real goal'
- Long-term density predictions
- Minimum viable populations
- Carrying capacity
- Set up AM framework up front

AM as applied to Compensatory Mitigation vs Restoration...it's a matter of degree

- Regulatory 'hammer'
- Time frame for performance
- Handling of uncertainties
- Stakeholders
- Volunteer use
- Monitoring level
- Contingencies
- Ability to do experiments
- Ability to model
- Scales of projects
- Dissemination of results
- Other?

Thanks! ron.thom@pnl.gov

Some papers –

43

- Adaptively addressing uncertainty in estuarine and near coastal restoration projects
- Balancing the need to develop coastal areas with the desire for an ecologically functioning coastal environment: Is net ecosystem improvement possible
- Monitoring and adaptive management guidelines for nearshore restoration proposals and projects

Nearshore assessment approach

