Interpretation and design of ocean acidification experiments in upwelling systems in the context of carbonate chemistry co-variation with temperature and oxygen

Jonathan C. P. Reum1*,‡, Simone R. Alin2, Chris J. Harvey1, Nina Bednáršek2, Wiley Evans2,3, Richard A. Feely2, Burke Hales4, Noelle Lucey5, Jeremy T. Mathis2,3, Paul McElhany1, Jan Newton6, and Christopher L. Sabine2

1Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, WA 98112, USA
2Pacific Marine Environmental Laboratory, National Oceanic and Atmospheric Administration, 7600 Sand Point Way NE, Seattle, WA 98115, USA
3Ocean Acidification Research Center, School of Fisheries and Ocean Sciences, University of Alaska Fairbanks, 245 O’Neill Bldg, Fairbanks, AK 99775, USA
4College of Earth, Ocean and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331, USA
5Marine Environment and Sustainable Development Unit ENEA, PO Box 224, La Spezia, Italy
6Applied Physics Laboratory, University of Washington, Box 355640, Seattle, WA 98105, USA

*Corresponding author: tel: +1 206 860 3204; fax: +1 206 860 3217; e-mail: jonathan.reum@noaa.gov
‡Present address: Washington Sea Grant, University of Washington, Box 355640, Seattle, WA, USA

Coastal upwelling regimes are some of the most productive ecosystems in the ocean but are also among the most vulnerable to ocean acidification (OA) due to naturally high background concentrations of CO2. Yet our ability to predict how these ecosystems will respond to additional CO2 resulting from anthropogenic emissions is poor. To help address this uncertainty, researchers perform manipulative experiments where biological responses are evaluated across different CO2 partial pressure (pCO2) levels. In upwelling systems, however, contemporary carbonate chemistry variability remains only partly characterized and patterns of co-variation with other biologically important variables such as temperature and oxygen are just beginning to be explored in the context of OA experimental design. If co-variation among variables is prevalent, researchers risk performing OA experiments with control conditions that are not experienced by the focal species, potentially diminishing the ecological relevance of the experiment. Here, we synthesized a large carbonate chemistry dataset that consists of carbonate chemistry, temperature, and oxygen measurements from multiple moorings and ship-based sampling campaigns from the California Current Ecosystem (CCE), and includes fjord and tidal estuaries and open coastal waters. We evaluated patterns of pCO2 variability and highlight important co-variation between pCO2, temperature, and oxygen. We subsequently compared environmental pCO2 – temperature measurements with conditions maintained in OA experiments that used organisms from the CCE. By drawing such comparisons, researchers can gain insight into the ecological relevance of previously published OA experiments, but also identify species or life history stages that may already be influenced by contemporary carbonate chemistry conditions. We illustrate the implications co-variation among environmental variables can have for the interpretation of OA experimental results and suggest an approach for designing experiments with pCO2 levels that better reflect OA hypotheses while simultaneously recognizing natural co-variation with other biologically relevant variables.

Keywords: California Current, climate change, hypoxia, multistressor experiment, pH.
Introduction

Coastal upwelling systems located along the eastern boundary of ocean basins are some of the most productive ecosystems in the ocean but are also among the most vulnerable to OA (Feely et al., 2008; Gruber et al., 2012). The net transport of deep, nutrient-rich waters to the sunlit surface by upwelling-favourable winds promotes high rates of primary production which in turn supports productive foodwebs and major fisheries (France, 2009). However, subsurface and newly upwelled waters naturally exhibit low O2 and high CO2 concentrations due to the remineralization of organic material exported from surface layers. Consequently, they have a reduced capacity to buffer against changes in carbonate chemistry resulting from ocean uptake of anthropogenic CO2 relative to open-ocean surface waters (Feely et al., 2008; Fassbender et al., 2011; Harris et al., 2013). In eastern Pacific systems such as the California Current, the CO2 burden and O2 drawdown due to respiration are high because the source waters transported to upwelling centres along the coast have been isolated from the surface for a few decades (Feely et al., 2008; Hauri et al., 2009). In the California Current, anthropogenic CO2 has already lowered pH by ~0.1, causing the depth of undersaturation with respect to aragonite to shoal and expanding the spatial extent of undersaturated surface waters (Feely et al., 2008; Gruber et al., 2012; Harris et al., 2013). In only a few more decades, models suggest that the depth of undersaturation may shoal into the upper 75 m of the water column in some regions year-round (Gruber et al., 2012; Hauri et al., 2013). Given the economic, ecological, and biogeochemical importance of eastern boundary upwelling regions, understanding how species that compose these ecosystems will respond to OA has emerged as a high research priority (Fabry et al., 2008; Gruber, 2011; Doney et al., 2012).

To evaluate the sensitivity of species to OA, researchers commonly rely on manipulative experiments where organisms are exposed to different carbonate chemistry conditions. Typically, experiments include “control” conditions that attempt to simulate contemporary or preindustrial CO2 concentrations and “acidified” treatments that correspond to potential future CO2 uptake by the oceans. For studies focused on organisms from low productivity, open-ocean surface waters researchers can rely on IPCC scenarios of atmospheric pCO2 concentrations to identify potential carbonate chemistry treatments because assumptions of air–sea pCO2 equilibrium are often nearly met (Barry et al., 2010; Orr, 2011). However, in upwelling systems, CO2 levels are more variable relative to open ocean waters due to the outcropping of high-CO2 subsurface waters and high rates of primary production and respiration that strongly modulate seawater carbonate chemistry (Hales et al., 2005; Feely et al., 2008; Borges and Abril, 2011; Fassbender et al., 2011). Consequently, OA experiments that use organisms from these habitats and that rely on IPCC future atmospheric CO2 scenarios to devise control and acidified seawater treatments may inadequately replicate contemporary carbonate chemistry or include treatments that fail to reflect realistic future OA hypotheses (Barry et al., 2010; Andersson and Mackenzie, 2012; McElhany and Busch, 2012).

Recognition of the importance of including environmentally relevant pCO2 levels in OA experiments has grown considerably, and has led to the use of seawater chemistry monitoring programmes to inform treatment design in several recent OA studies (Hofmann et al., 2014). Less appreciated from an experimental perspective, however, is the possibility that carbonate chemistry conditions may also naturally co-vary with other biologically relevant variables including temperature and O2 over multiple spatial and temporal scales (Reum et al., 2014). This may have important implications for the design and interpretation of ocean acidification (OA) experiments because of the potential for non-additive interactions between carbonate chemistry, temperature, and O2 on organismal performance and ecological interactions (Wernberg et al., 2012, Harvey et al., 2013; Koch et al., 2013; Kroeker et al., 2013). For many organisms, aerobic capacity and metabolic scope (the amount of energy that can be allocated to activities beyond those required for basic existence) may be influenced strongly by temperature, and adversely impacted by reductions in ambient oxygen availability or increases in CO2 concentrations (Pörtner, 2010, 2012).

Given the combined effects that temperature and environmental O2 and pCO2 have on organismal physiology and experimental evidence indicating non-additive interactions on response variables related to fitness and ecosystem function (Pörtner and Farrell, 2008; Pörtner, 2010; Harvey et al., 2013; Kroeker et al., 2013), knowledge of their co-variability is essential for designing OA experiments that adequately characterize biological performance under contemporary relative to future acidified conditions. Yet for workers focused on laboratory OA experiments, these relationships are rarely incorporated into experimental designs. This poses important potential drawbacks. Foremost, if carbonate chemistry strongly covaries with temperature or O2, researchers risk running experiments with control-water characteristics that are atypical of the habitat to which a focal organism/life stage may have acclimated or adapted to. Recently, pCO2 was shown to range widely (~200–2500 μmatm) and co-vary with temperature and O2 in a fjord located in the northeast Pacific (Reum et al., 2014). In that system, the strength and direction of the relationships changed with season, but also between subregions that differed in terms of vertical mixing. Consequently, within a given season and region, organisms occurring in low pCO2 waters experience temperatures and O2 levels that differed from those experienced by organisms that occupy high pCO2 waters, and this has direct implications for how ecologically relevant OA experiments should be designed (Reum et al., 2014).

Here, we expand on the topic and evaluate the potential importance of this issue for upwelling systems. To do so, we have assembled a large dataset of carbonate chemistry measurements from a variety of habitats throughout the California Current Ecosystem (CCE), a major eastern boundary upwelling system that supports highly productive foodwebs. Along the coast, equatorward winds during spring and summer drive surface flow offshore in an Ekman layer, leading to the upwelling of cold, salty, O2-poor, and nutrient- and CO2-rich subsurface water. In fall and winter, the wind direction reverses resulting in downwelling and shoreward advection of oceanic waters which are relatively warm, fresh, O2-saturated, nutrient-deplete, and near air–sea CO2 equilibrium (Evans et al., 2011; Harris et al., 2013). The dataset presented here consists of pCO2 measurements from multiple moorings and ship-based sampling campaigns that collectively span 14° of latitude, and includes data from estuary and open coastal water habitats. Although the extent of data is constrained in either time or space for any single sampling campaign, the synthesis of many datasets offers an overview of the potential range of pCO2, temperature, and O2 conditions experienced by organisms from this region. Subsequently, we compared environmental pCO2 and temperature measurements to conditions in OA experiments performed on organisms obtained from populations that reside within the CCE. In doing so, we place these
experiments in a larger environmental context and draw on observations that may help guide OA researchers in considering experimental designs that are more appropriate for organisms that occur in the CCE and similar coastal systems.

Material and methods

Carbonate chemistry data

Our analysis focused on coastal waters within the domain of the northern and central CCE (Figure 1). The region extends from northern Vancouver Island, British Columbia (50°N) to Point Conception, California (34°N), and is typified by distinct wind-driven upwelling (May–October) and downwelling (November–April) oceanographic seasons (Checkley and Barth, 2009). The region includes large expanses of open coastal habitat and many inlets and estuaries that range considerably in terms of surface area, depth, substrate, and connectivity with the open ocean (Hickey and Banas, 2003). To obtain an overview of the potential range of temperatures and carbonate chemistry conditions, we retrieved all publicly available records of measurements sampled within our region of interest from the Carbon Dioxide Information Analysis Center (CDIAC) and Surface Ocean CO2 Atlas (SOCAT, Bakker et al., 2013). The dataset includes carbonate chemistry measurements from discrete water samples collected at depth, shipboard measurements of surface water pCO$_2$, and mooring pCO$_2$ time-series of surface waters off the coast of California and Washington (Supplementary Table S1). In addition to CDIAC and SOCAT data, we also included unpublished carbonate chemistry data obtained from the 2011 and 2012 NOAA Ocean Acidification Programme West Coast Cruise survey, which sampled waters along the continental shelf of western North America; mooring pCO$_2$ time-series of surface waters from an open coast location (Newport, Oregon), and a shallow tidal estuary (Netarts Bay, Oregon); and published carbonate chemistry data from late summer and fall surveys in a large fjord estuary complex (Strait of Juan de Fuca and Puget Sound, Washington; Supplementary Table S1). Further details of the survey, sampling dates, sampling method, and habitats from which data were obtained are provided in Supplementary Table S1. Although the dataset does not include all habitat types that occur within the CCE, we believe these data are sufficiently representative enough to offer an overview of key patterns of carbonate chemistry, temperature, and O$_2$ co-variation. For the purposes of the present study, we included all measurements extending up to 200 km from the coast.

For our analysis, we focused on pCO$_2$ rather than other parameters of the carbonate system because pCO$_2$ is directly changed by anthropogenic CO$_2$ emissions and is the most commonly used treatment variable in species-exposure OA experiments. Further, direct measurements of pCO$_2$ were more widely available than other parameters in the CDIAC and SOCAT databases, and when not available were readily estimated from other measured parameters of the carbonate system (see Supplementary Table S1 for details on estimation methods). We recognize that organisms may potentially be more sensitive to other variables of the carbonate system such as pH or to changes in the calcium carbonate saturation state of seawater (Barton et al., 2012; Waldbusser and Salisbury, 2013) and that waters with similar pCO$_2$ values may differ with respect to aragonite or calcite saturation states if total alkalinitites differ. However, pCO$_2$ is routinely reported in OA studies and is the parameter that allowed us to best standardize comparisons among experiments and between experiments and environmental carbonate chemistry measurements. Further, the focus on pCO$_2$ prevented the use of some carbonate chemistry datasets such as those including information only on pH (e.g. Hofmann et al., 2011). We limited our analysis to pCO$_2$ measurements taken from the top 50 m of the water column because the species and life history stages for which OA experiments have been performed from the northern and central CCE typically occur in waters within this depth range, although individuals of some populations may occur for periods below this depth.

We evaluated separate relationships between pCO$_2$ and temperature and pCO$_2$ and O$_2$ within summer upwelling and winter downwelling periods. Co-variation patterns for pCO$_2$ and temperature were examined for data pooled from shipboard underway and discrete sample measurements collected along the West Coast continental shelf. In addition, we also examined co-variation patterns for Puget Sound and the Strait of Juan de Fuca discrete sample measurements (hereafter referred to as “Puget Sound”). A subset of these data were examined in an earlier study (Reum et al., 2014), but we include them here for completeness and to facilitate comparisons among habitats represented within the CCE. We chose to present co-variation patterns for Puget Sound separately from the West Coast because Puget Sound exhibits slow exchange with open coastal waters and high rates of primary productivity and respiration (Feely et al., 2010). The resulting pCO$_2$–temperature relationships therefore likely differ considerably from patterns observed in shelf waters. For the time-series data, we estimated pCO$_2$–temperature relationships for upwelling and downwelling seasons, but examined co-variation patterns separately for each mooring to evaluate site-level differences.

To evaluate pCO$_2$ and O$_2$ relationships and facilitate comparisons across survey types and seasons, we converted all O$_2$ concentration
measurements to micromole per kilogramme. As with the pCO$_2$ and temperature data, we examined co-variation within data pooled from shipboard West Coast measurements, Puget Sound, and each mooring and by season. To improve assumptions of normality in the residual error structure for the pCO$_2$—temperature and pCO$_2$—O$_2$ relationships, we log$_{10}$-transformed pCO$_2$ values before estimating linear relationships using least-squares regression. For presentation purposes, the linear relationships were back-transformed to the original pCO$_2$ scale. Our goal was to estimate overall mean relationships within seasons and survey types to facilitate visual inspection and to evaluate co-variation patterns in an exploratory manner. We therefore did not test for significant differences between seasons or survey types. All linear relationships were fitted using the R version 2.11 statistical software package (R Development Core Team, 2011).

OA experimental studies

We searched the published literature for OA experiments that included organisms obtained directly from habitats within the northern and central CCE or that originated from broodstock collected from the region. To do so, we searched Google Scholar, ISI databases (Web of Science, Current Contents), and references included in recently published reviews and meta-analyses that address OA (Dupont et al., 2010; Wernberg et al., 2012; Harvey et al., 2013; Kroeker et al., 2013; Wittmann and Pörtner, 2013). We used the search terms “ocean acidification”, “carbon dioxide”, “experiment”, and “manipulation”. We included all studies published through 15 October 2013 that were found under these search criteria.

From each study, we retrieved information on the collection site of the organism (or their broodstock) and the temperatures and pCO$_2$ levels at which the experiment was performed. For nearly all studies, experimental O$_2$ concentrations were not reported nor could saturation conditions be safely assumed. We therefore focused our comparison of environmental and experimental conditions to pCO$_2$ and temperature. Following the authors’ interpretation of the results, we recorded whether the dependent biological variables differed significantly in a positive or negative direction or showed no significant difference relative to the control pCO$_2$ level specified by the author. If authors did not explicitly designate a control pCO$_2$ level in their study, we considered treatments with pCO$_2$ levels closest to present-day air pCO$_2$ levels (~400 µatm) as the control to facilitate comparisons across studies. When more than one response variable was tested in an experiment, we coded the net outcome of the experiment at a given treatment level than one response variable was tested in an experiment, we coded the control to facilitate comparisons across studies. When more or showed no significant difference relative to the control of the results, we recorded whether the dependent biological variations to focused our comparison of environmental and experimental conditions to

OA experimental studies

We searched the published literature for OA experiments that included organisms obtained directly from habitats within the northern and central CCE or that originated from broodstock collected from the region. To do so, we searched Google Scholar, ISI databases (Web of Science, Current Contents), and references included in recently published reviews and meta-analyses that address OA (Dupont et al., 2010; Wernberg et al., 2012; Harvey et al., 2013; Kroeker et al., 2013; Wittmann and Pörtner, 2013). We used the search terms “ocean acidification”, “carbon dioxide”, “experiment”, and “manipulation”. We included all studies published through 15 October 2013 that were found under these search criteria.

From each study, we retrieved information on the collection site of the organism (or their broodstock) and the temperatures and pCO$_2$ levels at which the experiment was performed. For nearly all studies, experimental O$_2$ concentrations were not reported nor could saturation conditions be safely assumed. We therefore focused our comparison of environmental and experimental conditions to pCO$_2$ and temperature. Following the authors’ interpretation of the results, we recorded whether the dependent biological variables differed significantly in a positive or negative direction or showed no significant difference relative to the control pCO$_2$ level specified by the author. If authors did not explicitly designate a control pCO$_2$ level in their study, we considered treatments with pCO$_2$ levels closest to present-day air pCO$_2$ levels (~400 µatm) as the control to facilitate comparisons across studies. When more than one response variable was tested in an experiment, we coded the net outcome of the experiment at a given treatment level based on the result of the variable most sensitive to pCO$_2$.

From the outset, we recognized that the species and life history stages for which published OA experimental data were available held distributions that spanned large sections of the northern and central CCE or were planktonic with high dispersal potential. Further, the exact dispersal patterns of many of these species are not well understood. Although larvae of some species may be functionally limited to a subset of the CCE system (e.g. some species may occur primarily in bays or estuaries), “spillage” into adjoining habitats and waters through advective processes is also probable. We therefore used the full dataset of field pCO$_2$ and temperature measurements to demarcate the potential pCO$_2$—temperature space organisms may encounter. We acknowledge that the actual pCO$_2$ levels and temperatures experienced by organisms will differ for populations across locations, seasons, and due to possible interannual variation in upwelling and climate forcing. Our main intention, however, was to draw comparisons between the conditions maintained in OA experiments and the full range of environmental pCO$_2$ and temperature values based on empirical observations. In the absence of detailed information on the fine-scale distribution and movement patterns of most species and life history stages, and environmental pCO$_2$—temperature measurements of matching resolution, comparisons at finer spatio-temporal scales were not possible.

Results

pCO$_2$, temperature, and O$_2$ co-variation

Temperature and pCO$_2$ values in the upper 50 m of the CCE spanned 6–19°C and 100–1500 µatm, respectively, based on the pooled shipboard underway and discrete water sample measurements along the open coast. pCO$_2$ values tended to increase with decreasing water temperature during summer upwelling months (Figure 2a). In Puget Sound, a similar but steeper relationship was apparent relative to the open coastal waters, reflecting CO$_2$-enriched waters (Figure 2a). Along the open coast, the range of pCO$_2$ values was also wider at cooler relative to warm temperatures. For instance, pCO$_2$ values at 9°C ranged from 320 to 1400 µatm, while at 16°C, the range extended from 130 to 420 µatm. In Puget Sound, the pCO$_2$ range was also wider at cooler temperatures (Figure 2a).

Although fewer measurements were available during winter in general (Supplementary Table S1), the data showed weak co-variation between pCO$_2$ and temperature in open coastal waters and the overall range of pCO$_2$ values and temperatures narrowed relative to summer (Figure 2b). This is due to the relative absence of the cold, high- pCO$_2$ upwelled source waters. In contrast, winter pCO$_2$ and temperature values in Puget Sound positively covaried, and the range of pCO$_2$ values and temperatures also narrowed relative to summer (Figure 2b).

Time-series data collected from moored platforms in open coastal waters from four locations also indicated co-variation between pCO$_2$ and temperature (Figure 3a–c). During summer upwelling months, pCO$_2$ again generally declined with increasing temperature (Figure 3a–c). The range of pCO$_2$ levels among stations, however, differed substantially. Time-series data collected at moorings in shelf waters off Washington and near Point Conception, CA. (Figure 3a and b) ranged in pCO$_2$ from 200 to 600 and 300 to 600 µatm, respectively, while off the coast of Oregon the range spanned 200–1100 µatm (Figure 3c). The differences among stations reflect considerable spatial variation in the supply of newly upwelled waters.

Time-series data collected from Netarts Bay, a shallow tidal estuary in northern Oregon, indicated summer range in pCO$_2$ values was also considerable, spanning 300–800 µatm and reflected high rates of primary production and respiration (Figure 3d). The overall relationship between pCO$_2$ and temperature, however, was also negative. In winter, co-variation between pCO$_2$ and temperature at all mooring stations was weaker relative to summer but variable across stations (Figure 3d). In addition, the range of temperatures and pCO$_2$ values were generally lower in winter relative to summer in two of the five stations (Figure 3c and d).

Measurements of O$_2$ were available for a subset of pCO$_2$ records included in the complete environmental pCO$_2$ and temperature data set (Supplementary Table S1). For all survey types, mooring time-series, and seasons, pCO$_2$ levels decreased with increasing O$_2$ concentration (Figure 4). For most moorings on the shelf, O$_2$ ranged from 230 to 350 µmol kg$^{-1}$ (both seasons combined). Summer O$_2$ levels at Newport Oregon, however, ranged from 120 to 350 µmol kg$^{-1}$ (Figure 4). Summer O$_2$ measurements from discrete samples from
Puget Sound and the West Coast ranged more widely, from 40 to 400 μmol kg⁻¹, where concentrations below ~60 μmol kg⁻¹ reflect hypoxic conditions (Figure 4). The general negative relationship between pCO₂ and O₂ corresponds to the well-understood effects of aerobic respiration and photosynthesis in marine ecosystems. When aerobic respiration dominates, CO₂ is remineralized and O₂ levels are drawn down, while the reverse occurs when photosynthesis dominates.

OA studies
In total, 26 experiments from 22 published OA studies included organisms (or broodstock) from the northern and central CCE (Figure 1b) and provided sufficient information on treatment water conditions to compare with the CCE pCO₂-temperature space defined by combining all environmental datasets (Table 1). In terms of taxonomic diversity, 50, 35, and 15% of experiments evaluated responses in echinoderms, molluscs, and teleosts, respectively. However, 35% of all experiments focused on responses in a single species, the echinoderm Strongylocentrotus purpuratus (Table 1). Of the experiments, 81% examined gamete, egg, or larval performance (survival, growth, calcification rates), while the remaining studies evaluated performance metrics (growth, development, or calcification rates) in juvenile or adult life history stages (Table 1). One study measured genetic diversity in echinoderm larvae after exposure to different pCO₂ treatments to evaluate evolutionary potential.

To facilitate visual inspection and comparison of experimental pCO₂ and temperature treatments with the pCO₂-temperature space defined by the complete set of environmental measurements in our dataset, we examined echinoderm and non-echinoderm studies separately (Figure 5). Overall, OA experiments included pCO₂ treatment levels that extended from 200 to 4000 μatm; 42% of experiments included a single elevated pCO₂ treatment in addition to a control at a given temperature, 38% considered two different elevated pCO₂ treatments, and 19% included three or more elevated treatments (Figure 5). In total, 72% of experiments included at least one control and one elevated pCO₂ treatment that occurred within the observed range of pCO₂ and temperature values in the CCE. Of those, 63% (10 out of 16) observed negative biological effects, 18% observed positive effects, and 18% observed no effect relative to control pCO₂ levels. Only two studies included pCO₂ treatments below approximate present-day atmospheric levels (~400 μatm; Figure 5).

Compared with the pCO₂-temperature space defined by the complete set of environmental measurements in our dataset, five experiments were performed at temperatures that matched or exceeded the warmest observed values (~19°C; Figure 5). These included three experiments on the early life history stages of the native Olympia oyster, an experiment on sand dollar larvae, and an experiment on the non-native Pacific oyster which is routinely reared at ~20°C to optimize survival under commercial hatchery conditions. One experiment included a 2.1°C treatment; though this temperature was meant to simulate cool conditions in Alaskan waters, the source stock was collected near Puget Sound (Table 1).

A review of each study indicated that Intergovernmental Panel on Climate Change (IPCC) estimates of future global surface ocean mean pCO₂ levels were used as the sole rationale for selecting OA treatments in 45% of studies, while 31% cited a combination of regional modelling studies, local field measurements, and IPCC estimates to support their choice of experimental pCO₂ treatment levels. Of the remaining studies, 13% provided no rationale for their choice of pCO₂ treatment levels, one based the high pCO₂ treatment level on observations of contemporary upwelling conditions, and one noted natural high carbonate chemistry variability in coastal upwelling systems which necessitated the need to test biological responses to a wide range of pCO₂ levels. In terms of temperature, 80% of studies did not provide a rationale for their choice of
experimental levels. The remaining studies cited similarity to local field conditions as a rationale for selecting temperatures. Of the two studies that performed experiments that included crossed temperature and pCO$_2$ treatments meant to correspond to conditions in the CCE, the warmer treatments were chosen in reference to IPCC global average temperature increase projections.

Discussion

Single-species response experiments have offered important initial evidence that some species and life history stages may be adversely impacted by OA (Kroeker *et al.*, 2013; Wittmann and Portner, 2013), but there is a pressing need for the development of experiments that include more appropriate reference treatments that reflect pCO$_2$ levels species have acclimated or adapted to and acidified treatments that more closely reflect natural heterogeneity in carbonate chemistry (Barry *et al.*., 2010; Andersson and Mackenzie, 2012; McElhany and Busch, 2012; Waldbusser and Salisbury, 2013). Our analysis shows that an additional source of concern is natural co-variation between carbonate chemistry and other biologically relevant variables including temperature and O$_2$. These findings have direct consequences for designing experiments that aim to include control treatments that are similar to natural water conditions and for selecting elevated pCO$_2$ treatment levels that more closely correspond to OA hypotheses. Further, by placing the findings of published OA experiments into a larger environmental context, we gain information on the ecological relevance of experimental water conditions and insight into the potential sensitivity of some species and life stages to carbonate chemistry conditions that already occur in the CCE.

Although researchers increasingly recognize the importance of basing experimental pCO$_2$ levels on *in situ* carbonate chemistry observations (Yu *et al.*, 2011; Evans *et al.*, 2013; Hofmann *et al.*, 2014), the implications of natural co-variation with temperature or O$_2$ to experimental design and inference are only beginning to be explored. Given experimental evidence and theoretical expectations of interactive or synergistic effects between pCO$_2$, temperature, and O$_2$ on organisms...
Figure 4. Relationships between pCO² and O₂ in the top 50 m of the water column during summer upwelling (May through October) and winter downwelling seasons (November through April). Regression lines are overlaid for summer and winter; lines labelled M, P, and C correspond to mooring, Puget Sound, and open coast datasets, respectively. For reference, approximate present-day pCO² levels (~390 µatm) are indicated by the dashed horizontal line, and the hypoxia threshold (60 µmol kg⁻¹) is indicated with a dashed vertical line.

(Pörtner, 2010, 2012; Harvey et al., 2013), we suggest that failure to account for natural co-variation among these variables in habitats from the CCE may lead to results with diminished relevance for making predictions. To illustrate this point, we present an example multistressor experimental scheme typical of published OA experiments in which temperature (three levels at 8, 12, and 16°C) is crossed with two pCO² levels that correspond to approximate global surface ocean present-day (400 µatm) and future (800 µatm) conditions (Figure 6a). Under the conventional method, treatments are fully orthogonal which permits estimates of the effect sizes of the individual predictor variables and of their interaction on the response variable. The method holds merit as a tool for comparing the relative influence that each predictor has on the response variable, is widely applied in multistressor experiments, and facilitates the development of mechanistic models. However, if a goal of a study is to evaluate the potential sensitivity of organisms to future OA as is often the case, the design may be inadequate, given natural pCO²–temperature co-variation within different habitats and water masses. For example, assuming an organism of interest occurs in shelf waters off Oregon during summer upwelling months (e.g. a pelagic larval invertebrate), the assumption that 800 µatm corresponds to a future OA prediction across all temperatures is not accurate. At the Newport, Oregon, mooring pCO² levels of 800 µatm already occur at 8°C under present-day conditions and “control” 400 µatm waters do not (Figure 6a). At temperatures above 13°C, the mean pCO² values approach air–sea equilibrium conditions. We do not doubt that simple crossed experimental designs will provide information on the interactive effects of pCO² and temperature, but we do question the efficacy of the design for testing OA hypotheses on future ecological response to OA, given naturally occurring pCO²–temperature relationships and the wide range of both variables in the CCE.

In light of potential co-variation between carbonate chemistry and other important environmental variables, how should researchers select pCO² treatments that correspond to OA hypotheses? As a starting point, we recommend that OA experimental designs include multiple controls that reflect the span of pCO² levels and temperatures likely to be experienced by the organism under study (Figure 5b). To design pCO² treatments that represent future OA scenarios in productive coastal systems, we suggest that researchers focus on changes in the anthropogenic contribution to in situ dissolved inorganic carbon, DIC (e.g. Feely et al., 2008, 2010; Barry et al., 2010; Melzner et al., 2012; Shaw et al., 2013). At the Newport, Oregon, mooring, newly upwelled waters exhibit pCO² values that are elevated relative to air–sea equilibrium conditions due to the remineralization of organic material before surfacing (Evans et al., 2011). However, after surfacing CO₂ concentrations can be drawn down rapidly by photosynthesis (Hales et al., 2005; Hales et al., 2006; Evans et al., 2011), often at rates that typically far exceed CO₂ equilibration times across the air–sea interface (e.g. van Geen et al., 2006; Fassbender et al., 2011). Consequently, the anthropogenic CO₂ burden of upwelled waters is primarily acquired when they were last in contact with the atmosphere and before DIC changes due to biological processes post-surfacing. In our example, pCO² treatments reflecting future OA hypotheses could be obtained by increasing in situ DIC concentrations by an increment (∆DIC) expected under a given CO₂ emissions scenario. The future DIC estimate (DIC + in situ DIC), along with a second parameter from the carbonate system, could then be used to recalculate the carbonate system to estimate treatment pCO² levels.

Because the Newport, Oregon, time-series consists only of pCO², we first needed to estimate in situ DIC. To do so, we estimated total alkalinity (TA) from salinity measurements using a linear model parameterized with data from the CCE (Gray et al., 2011). The relationship has relatively low residual error (approximately ±20 µmol kg⁻¹) and was shown previously to adequately predict TA for the purposes of estimating the carbonate system when using pCO² as the second parameter (Harris et al., 2013). We used the estimated TA and in situ pCO², salinity, and temperature measurements to solve the carbonate system and calculate in situ DIC. To estimate ∆DIC, we solved the carbonate system based on estimates of TA, and in situ temperature, and salinity, but assuming sea-water equilibrium with average atmospheric pCO² levels during the period of the moored observations (~390 µatm; Harris et al., 2013) and those predicted under an emissions scenario for the year 2100 (788 µatm; Intergovernmental Panel on Climate Change IS92a “continually increasing” emissions scenario). The present-day air–sea equilibrium DIC estimate was subtracted from the future equilibrium estimate to obtain ∆DIC. Although the same present day and future pCO² levels were used to calculate ∆DIC for all samples, ∆DIC values differ among samples because estimates of DIC at air–sea pCO² equilibrium vary based on the TA, temperature, and salinity of the sample. Across all water samples, ∆DIC spanned ~75–105 µmol kg⁻¹ depending on the TA and temperature of samples. We then obtained future pCO² estimates by solving the carbonate system using the estimated TA and in situ DIC + ∆DIC values (Figure 6b). Versions of the method have been described previously (e.g. Barry et al., 2010) and can be used to estimate preindustrial carbonate chemistry conditions (e.g. Feely et al., 2008; Harris et al., 2013).

Under this approach, and assuming the same number of treatments is used as depicted in Figure 6a, the effects of temperature and pCO² can no longer be separated because orthogonality in the design is lost (Figure 6b). However, a more realistic set of control treatments are included that offer a firmer basis for drawing
<table>
<thead>
<tr>
<th>Study number</th>
<th>Reference</th>
<th>Collection site</th>
<th>Species (common name)</th>
<th>Life stage</th>
<th>Duration (days, hours)</th>
<th>T (°C)</th>
<th>pCO$_2$ (µatm)</th>
<th>Treatment pCO$_2$ (µatm)</th>
<th>Outcome relative to control</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Gooding et al. (2009)</td>
<td>Jaricho Beach, BC</td>
<td>Pisaster ochraceus (purple sea star)</td>
<td>Juvenile</td>
<td>70 d 12, 15</td>
<td>380</td>
<td>780</td>
<td></td>
<td>Increased growth rate; reduced calcified mass; feeding and growth increased with temperature</td>
</tr>
<tr>
<td>2</td>
<td>Reuter et al. (2011)</td>
<td>Barkley Sound, BC</td>
<td>Strongylocentrotus franciscanus (red sea urchin)</td>
<td>Sperm/eggs</td>
<td>1 h 10.2</td>
<td>400</td>
<td>800, 1800</td>
<td></td>
<td>Decreased range of sperm concentrations over which high fertilization success was likely</td>
</tr>
<tr>
<td>3</td>
<td>Nienhuis et al. (2010)</td>
<td>Barkley Sound, BC</td>
<td>Nucella lamellosae (Frilled dogwinkle)</td>
<td>Adults</td>
<td>6 d 9.0</td>
<td>380</td>
<td>780, 1585</td>
<td></td>
<td>Enhanced shell dissolution</td>
</tr>
<tr>
<td>4</td>
<td>Sunday et al. (2011)</td>
<td>Barkley Sound, BC</td>
<td>Strongylocentrotus franciscanus (red sea urchin)</td>
<td>Larvae</td>
<td>1 d 12.0</td>
<td>400</td>
<td>1000</td>
<td></td>
<td>Reduced larval size, large variation among families</td>
</tr>
<tr>
<td>4</td>
<td>Sunday et al. (2011)</td>
<td>Barkley Sound, BC</td>
<td>Mytilus trossulus (bay mussel)</td>
<td>Larvae</td>
<td>1 d 12.0</td>
<td>400</td>
<td>1000</td>
<td></td>
<td>Reduced larval size, small variation among families</td>
</tr>
<tr>
<td>5</td>
<td>Crim et al. (2011)</td>
<td>Barkley Sound, BC</td>
<td>Haliotis kamtschatkana (northern abalone)</td>
<td>Larvae</td>
<td>8 d 12.0</td>
<td>400</td>
<td>800, 1800</td>
<td></td>
<td>Reduced survival, increased abnormalities in shell structure, reduced size in normal-shelled larvae</td>
</tr>
<tr>
<td>6</td>
<td>Chan et al. (2011)</td>
<td>Orcas Island, WA</td>
<td>Dendraster excentricus (Pacific sand dollar)</td>
<td>Larvae</td>
<td>10 d 20.0</td>
<td>380</td>
<td>1000</td>
<td></td>
<td>Reduced body size and stomachs; no effect on swimming speed</td>
</tr>
<tr>
<td>7</td>
<td>Timmins-Schiffman et al. (2012)</td>
<td>San Juan Island, WA</td>
<td>Crassostrea gigas (Pacific oyster)</td>
<td>Larvae</td>
<td>3 d 20.0</td>
<td>468</td>
<td>847, 1065</td>
<td></td>
<td>Increased calcification at day 1, but smaller average size on day 3</td>
</tr>
<tr>
<td>8</td>
<td>O’Donnell et al. (2013)</td>
<td>San Juan Island, WA</td>
<td>Mytilus trossulus (bay mussel)</td>
<td>Adults</td>
<td>20 d 10.4</td>
<td>432</td>
<td>299, 575, 736, 980, 1057, 1180, 1322, 1498</td>
<td></td>
<td>Weaker, less flexible byssal threads at treatments above 1200 µatm</td>
</tr>
<tr>
<td>9</td>
<td>Hurst et al. (2012)</td>
<td>Port Townsend, WA</td>
<td>Theragra chalcogramma (walleye pollock)</td>
<td>Yearlings</td>
<td>42 d 8.8</td>
<td>414</td>
<td>478, 815, 1805</td>
<td></td>
<td>No effect on growth but increase in otolith deposition rate, biological implication is unclear</td>
</tr>
<tr>
<td>9</td>
<td>Hurst et al. (2012)</td>
<td>Port Townsend, WA</td>
<td>Theragra chalcogramma (walleye pollock)</td>
<td>Sub-yearlings warm</td>
<td>196 d 8.3</td>
<td>596</td>
<td>828, 1285, 2894</td>
<td></td>
<td>Increase growth at pCO$_2$ higher than 900 µatm; no change in condition factor</td>
</tr>
<tr>
<td>9</td>
<td>Hurst et al. (2012)</td>
<td>Port Townsend, WA</td>
<td>Theragra chalcogramma (walleye pollock)</td>
<td>Sub-yearlings cool</td>
<td>196 d 2.4</td>
<td>386</td>
<td>225, 643, 1543</td>
<td></td>
<td>No difference in growth or condition factor across treatments</td>
</tr>
<tr>
<td>10</td>
<td>Hurst et al. (2013)</td>
<td>Port Townsend, WA</td>
<td>Theragra chalcogramma (walleye pollock)</td>
<td>Eggs/larvae</td>
<td>35 d 8.1</td>
<td>442</td>
<td>296, 871, 1844</td>
<td></td>
<td>No difference in egg hatch rate, size, or survival, but longer time till hatching; authors think elevated pCO$_2$ treatments have minor effect</td>
</tr>
<tr>
<td>11</td>
<td>Evans et al. (2013)</td>
<td>Fogarty Creek, OR</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>96 h 12.8</td>
<td>435</td>
<td>813, 1255</td>
<td></td>
<td>Transcriptome up-regulation of genes related to calcification at intermediate pCO$_2$, no change at high level</td>
</tr>
<tr>
<td>12</td>
<td>Pespeni et al. (2013)</td>
<td>OR to CA, various locations</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>17 h 14.1</td>
<td>428</td>
<td>897</td>
<td></td>
<td>Reduction in larval body length, change in allele frequency, no change in timing of settlement or competence to metamorphose</td>
</tr>
<tr>
<td>13</td>
<td>LaVigne et al. (2012)</td>
<td>OR to CA, various locations</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>50 d 14.1</td>
<td>490</td>
<td>1001</td>
<td></td>
<td>No change Sr/Mg composition in spines; though a difference was observed for a Santa Barbara population of urchins</td>
</tr>
<tr>
<td></td>
<td>Study (Year)</td>
<td>Location</td>
<td>Species</td>
<td>Stage</td>
<td>Days</td>
<td>Cell Details</td>
<td>Results</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>----------------------------------</td>
<td>---------------------------------</td>
<td>-----------------------------------</td>
<td>-------------------------------</td>
<td>------</td>
<td>--------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>Kelly et al. (2013)</td>
<td>Northern and southern CA, various locations</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>5</td>
<td>13.0 424 1210</td>
<td>Reduced size in larvae from dams and sires taken from northern and southern locations; no difference in metabolism</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Place and Smith (2012)</td>
<td>Bodega Bay, CA</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Embryos</td>
<td>7</td>
<td>15.1 378 1486, 4110</td>
<td>No disruption to cell cycle in fertilized eggs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>Hettinger et al. (2012)</td>
<td>Tomales Bay, CA</td>
<td>Ostrea lurida (Olympia oyster)</td>
<td>Larvae/juveniles</td>
<td>45</td>
<td>20.0 739 933, 1355</td>
<td>Reduced larval and juvenile growth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Hettinger et al. (2013a)</td>
<td>Tomales Bay, CA</td>
<td>Ostrea lurida (Olympia oyster)</td>
<td>Larvae</td>
<td>22</td>
<td>19.4 520 1075</td>
<td>Reduced number of settlers; no difference in shell size or larval dry weight</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Hettinger et al. (2013b)</td>
<td>Tomales Bay, CA</td>
<td>Ostrea lurida (Olympia oyster)</td>
<td>Larvae/juveniles</td>
<td>127</td>
<td>20.0 485 1060</td>
<td>Reduced larval survival and growth; reduced growth in juveniles outplanted to an estuary</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Gaylord et al. (2011)</td>
<td>Tomales Bay, CA</td>
<td>Mytilus californianus (California mussel)</td>
<td>Larvae</td>
<td>8</td>
<td>15.4 380 540, 970</td>
<td>Thinner, weaker shells</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>Padilla-Gamiño et al. (2013)</td>
<td>Santa Barbara, CA</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>75</td>
<td>13, 18 400 1100</td>
<td>Reduced body size and respiration rate; difference in transcriptome observed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>Matson et al. (2012)</td>
<td>Santa Barbara, CA</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>6</td>
<td>15.6 365 1038, 1444</td>
<td>Reduced arm length; no difference in utilization of energy lipid reserves and protein content remained unchanged</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Yu et al. (2011)</td>
<td>Santa Barbara, CA</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>6</td>
<td>15.6 372 1057, 1469</td>
<td>Slight reduction in size</td>
<td></td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>Yu et al. (2011)</td>
<td>Santa Barbara, CA</td>
<td>Strongylocentrotus purpuratus (purple sea urchin)</td>
<td>Larvae</td>
<td>6</td>
<td>15.6 432 1441</td>
<td>Slight reduction in size</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
inferences about future OA impacts at a given temperature. The experimental design could be improved further by using O2 concentrations that currently occur at the three different pCO2–temperature controls.

The method we use to estimate future pCO2 requires several important assumptions. First, the approach implicitly assumes that TA, salinity, and temperature will remain unchanged and that future difference in DIC between the observed in situ values and...
those calculated assuming present-day air–sea equilibrium will
remain the same. Further, to estimate ΔDIC, we assumed that all
water properties measured at the time of sampling are the same as
when the water mass last approached air–sea equilibrium. If
waters were cooler at that time, this would result in a slight overesti-
mate of ΔDIC of $\approx 1.6 \mu$mol kg$^{-1}$ for each degree Celsius.
Following earlier studies, we also assumed that waters upwelled at
the mooring location possessed an anthropogenic CO$_2$ burden
that approximated present-day atmospheric pCO$_2$ conditions
(Harris et al., 2013). In other locations within the CCE, such
assumptions may not be justified because subsurface waters
upwelled on to the shelf may last have had contact with the
surface decades prior and therefore would contain less
anthropogenic CO$_2$ (Feely et al., 2008; Harris et al., 2013).

The OA pCO$_2$–temperature relationship depicted in Figure 6b
corresponds to one simple hypothesis for how present-day carbon-
ate chemistry conditions might change with a simple augmentation
of CO$_2$. However, marine organisms will be subjected to multiple
stressors in the future, including warmer temperatures, lower
ambient O$_2$ concentrations, cultural eutrophication, and pollution
(Boyd, 2011; Gruber, 2011; Doney et al., 2012). Treatments corre-
gnating to an OA + warming hypothesis could be created by
adding to in situ measurements of both temperature and DIC and
recalculating the carbonate system to obtain appropriate estimates
of pCO$_2$ (Melzner et al., 2012). If a hypoxia + OA treatment is
sought, any assumed reduction in O$_2$ owing to aerobic respiration
necessarily corresponds to an increase in CO$_2$ (Melzner et al.,
2012; Sunda and Cai, 2012). The corresponding increase in DIC
beyond that attributed to OA could be estimated based on the
molar ratio of CO$_2$ consumed to CO$_2$ released in the respiratory con-
sumption of organic matter (Sunda and Cai, 2012). We caution,
however, that the appropriateness of these simple methods for esti-
mating treatment levels should be thoughtfully considered in the
light of the physical and biological attributes of the system under
study. Such simplifications do not take into account the indirect
and cascading impacts that changes in individual properties such
as temperature will have on ecosystem metabolism and thus the
distribution and concentration of O$_2$ and CO$_2$ (e.g. Keeling et al.,
2010; Gruber, 2011; Doney et al., 2012), nor would they reflect potential
changes in large-scale circulation patterns or productivity regimes
which might fundamentally alter relationships between pCO$_2$ and
other variables (e.g. Rykaczewski and Dunne, 2010). Despite these
uncertainties, developing experimental designs that include
controls that reflect present-day pCO$_2$–temperature–O$_2$ relationships
in upwelling systems should become the cornerstone of experiments
that aim to quantify the potential response of organism to future
predicted changes in their environment. The development of experi-
mental systems that permit simultaneous control over pCO$_2$,
temperature, and O$_2$ conditions remains a technical challenge, but
a growing number of OA research facilities are acquiring the capacity
to do so (Bockmon et al., 2013).

Our compilation of environmental carbonate chemistry data is
meant to offer an initial overview of the ranges of pCO$_2$, tempera-
ture, and O$_2$ in the CCE and the extent to which their relationships
vary between seasons and regions. We examined patterns of co-
variation between pCO$_2$ and temperature at coarse seasonal time-
 scales, but note that co-variation patterns may differ depending
on temporal scale. On diel time-scales, solar heating and photosyn-
thesis and respiration may drive strong cyclical patterns in tempera-
ture, pCO$_2$, and O$_2$ (Barton et al., 2012; Friederich et al.,
2012; Waldbusser and Salisbury, 2013), while abrupt events such as
storms or the advection of a different water mass into a region can
result in rapid change in water characteristics that may persist for
several days (Friederich et al., 2012). Over interannual time-scales,
large-scale climate phenomena like El Niño/Southern Oscillation
can influence upwelling patterns, coastal productivity, carbonate
chemistry (Chavez et al., 1999; Friederich et al., 2002), and thus po-
tentially relationships among pCO$_2$ and temperature and O$_2$. To
date, studies evaluating patterns of co-variation between pCO$_2$
and other biologically relevant variables over a range of temporal
scales are sparse, but the topic is an area of research we are currently
exploring. Incorporating both temporal dynamics and multiple
stressors in experimental systems is technically challenging, but
may be necessary for ecologically relevant predictions.

Conclusions

OA is expected to have far-reaching impacts on the structure and
function of marine ecosystems by altering biogeochemical processes
and the productivity and distribution of species (Fabry et al., 2008;
Doney et al., 2009, 2012; Mora et al., 2013; Waldbusser and
Salisbury, 2013). Our ability to predict the response of complex eco-
logical systems to OA, however, remains limited and is highly con-
strained by major uncertainties in the response of species to both
direct (e.g. physiology, neurological impairment) and indirect
(e.g. trophic interactions) processes that may be vulnerable to OA
(Fabry et al., 2008; Hofmann et al., 2010). While authors have
noted the need for OA researchers to use pCO$_2$ levels that corre-
spond to ambient conditions a study species or life history stage is
likely to experience (Andersson and Mackenzie, 2012; McElhany
and Busch, 2012), patterns of co-variation with temperature and
O$_2$ have yet to be incorporated into OA experimental designs
(Reum et al., 2014). As demonstrated here, this issue should be of
concern to researchers in upwelling systems and other coastal envi-
rornments where water conditions are highly dynamic over a range of
spatial and temporal scales and where co-variation between pCO$_2$,
temperature, and O$_2$ are generally expected. Because inferences on
the potential response of organisms to future conditions are neces-
sarily premised on the notion that experimental controls reflect
present-day conditions, we strongly recommend researchers con-
sider how pCO$_2$ naturally varies with other biologically important
variables in their experimental designs. Importantly, the studies
we reviewed for the CCE indicate that several species may be sensi-
tive to carbonate chemistry conditions that already occur, and
suggest that present-day variability in carbonate chemistry may be
more important to contemporary ecological patterns than previ-
ously thought. With the continued collection of high-quality car-
bonate chemistry measurements and their archival on freely
accessible databases, analyses like the one we present here for the
CCE may yield further insight into the relevance of carbonate chem-
istry variability to contemporary ecological processes as well as
guide OA experimental design in other marine systems.

Supplementary data

Supplementary material is available at the ICESJMS online version
of the manuscript.

Acknowledgements

The authors wish to thank many research technical staff in the lab-
oratories that contributed data used in this manuscript, particu-
larly the scientific and engineering staff in NOAA’s Pacific Marine
Environmental Laboratory (PMEL) carbon, CTD-O$_2$, and engi-
neering groups; UW’s Applied Physics Laboratory (UW/APL) and
School of Oceanography; OSU’s College of Earth, Ocean, and Atmospheric Sciences Ocean Ecology and Biogeochemistry division; and the Scripps Institution of Oceanography Ocean Time Series Group for the tremendous effort involved in making these datasets available. In addition, we thank the officers and crew on all spatial surveys, underway observing ships, and mooring deployments for their able assistance during field operations. Funding for JCPR was provided through a National Research Council Fellowship. Funding for NOAA/PMEL contributions to the mooring time-series, underway pCO2, and spatial survey data used in these analyses were provided by NOAA’s Climate Programme Office’s Global Carbon Cycle Programme (grants GC05-288 and GC10-102), NOAA’s Ocean Acidification Programme, and NOAA/PMEL. The Chà bà mooring off La Push, Washington, was also supported by the Murdock Charitable Trust, NANOOS (Northwest Association of Networked Ocean Observing Systems, a Regional Association of NOAA’s US Integrated Ocean Observing System Programme), UW/APL, UW College of the Environment, and UW Provost’s Office. The PRISM cruises were supported by the State of Washington through UW Oceanography and APL. The NH10 mooring is funded by NOAA through NANOOS, and by NSF through CMOP (Science and Technology Center for Coastal Margin Observation and Prediction OCE-0424602). Surface ocean pCO2 data collected on the NH10 mooring were supported by NSF Chemical Oceanography OCE-0752576 awarded to BH and P.G. Strutton. I. Kaplan, T. Klinger, and three anonymous reviewers provided valuable comments on early versions of the manuscript. This is PMEL contribution number 4100.

References

Gruber, N. 2011. Warming up, turning sour, losing breath: ocean biogeochemistry under global change. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369: 1980–1996.

for the design of ocean acidification experiments. PLoS ONE, 9: e89619.

Handling editor: Howard Brownman