

Background: Problems 1

- Larvae are often susceptible to low pH waters
 - Thin shells that are more prone to dissolving than those of older life stages
- Ocean acidification → losses of larval bivalves
 - Alarmingly low numbers of Pacific oyster *Crassostrea* gigas larvae have been observed in local estuaries in association with upwelling of low pH waters since 2005
 - Associated lack of oyster recruitment
- Regional hatcheries have suffered extreme losses of oyster larvae in association with low pH waters, altered carbon chemistry and, in some cases, disease outbreaks (vibriosis)

Background: Problems 2

- In local hatcheries some species fare better than other species during periods of low pH and Vibrio tubiashii outbreaks
- e.g. Geoduck clam (*Panopea generosa*) seemed to thrive while oysters were dying
- We ask: Who are the likely winners and losers?

Research Goals

- Determine how elevated pCO₂ (ocean acidification) impacts survival and disease susceptibility of key wild and farmed molluscs
- Investigate how temperature influences vulnerability to these environmental stressors

Photo: Norbert Dankers

Ecosystem Response

- Lack or reduced of larval survival can have effects felt throughout the ecosystem:
 - No recruitment
 - Population declines
 - Lack of larvae means less food for its predators and can impact populations of predators
 - Potential for ecosystem wide response if affected species are keystone in that locale
- Others unaffected species may thrive
- Combined changes in who wins and loses can alter community dynamics

Experimental Design & Plans

CO₂ level:

Current: ~390 ppm (control) Yr 2100: 520 or 750 ppm Yr 2100 and beyond AND current PNW: 1000 or 2000 ppm

No Vibrio tubiashii

With Vt

Measure:

- survival
- growth
- calcification
- development
- physiology
 (gene
 expression and
 stress response)

More pinto abalone survived at ambient conditions versus 750ppm CO₂ conditions 48 and 72 hr

Pinto abalone appear to be losers

Manila clam larval survival was not affected by CO₂ level

400ppm

520ppm

1000ppm

Sizes of Manila clam were the same at all CO₂ levels

Manila clams appear to be winners

400ppm

520ppm

1000ppm

Geoduck appear to be winners too!

Graph courtesy of D. Bascom, S. Busch, P. McElhany et al.

Pacific oysters appear to be losers:
"Canary in coal mine"

Larvae were smaller and fewer larvae were fully calcified in the highest pCO₂ (lowest pH) treatment

Manila Clams: Is the biology of the clams altered even though they seem to survive well at all CO₂ levels tests?

Analysis of gene expression says YES!

Tools developed

- Determine winners (Geoduck and Manila clams) and losers (Pinto abalone and Pacific oysters) for industry to adapt to changing conditions
- Better enable managers to make policy decisions
- Not all losers may be losers:
 - May be differential performance among families
 - We aim to identify more resistant Pacific oyster families (lines)
- Molecular analyses may enable us to:
 - Understand mechanisms of resistance or susceptibility to OA
 - Identify which animals are likely winners

Way To Move Forward

- Education, education
- Ask yourselves: What can you do?
- What are we doing besides research, turning off lights and riding our bikes to work?

Teaching climate change, ocean acidification and the carbon cycle:
OASIC:GK-12 Sea Grant project

Hands-on Science: Educational Outreach, Ocean acidification and Oysters

Samantha Brombacker, Siri Nelson

Brent Vadopalas, Carolyn Friedman

Washington Sea Grant Project # NA10OAR4170057

University of Washington: OACIS GK-12

- Ocean and Coastal Interdisciplinary Science
- Pairs Biology, SAFS and Oceanography graduate students with High School Teachers in Seattle and San Juan Islands
- Reached over 800 students during the 2010-11 school year
- Biology, Marine Science, Environmental Science and Chemistry classrooms all participated

Ocean Acidification Kits: To evaluate the influence of OA on oyster seed survival, weight and color

Students measure:

- Temperature
- pH
- Gray scale value
- Buoyant weight
- Mortality

Conclusions

- Ocean acidification's impacts on larvae vary among species
- Some are winners and some are losers
- We are investigating differential affects on larvae and adult stages and developing tools to aid the shellfish industry and resource managers
- Education is an important tool to effect behavior change in our communities
 - High School OA curriculum developed

Acknowledgments

Taylor Shellfish Farms, Washington

SAFS, University of Washington

Dept. of Biology, University of Washington

Students of Seattle and Orcas Island Schools (too many to name)

Tansy Clay, OACIS GK-12, COSEE UW

Noelle Machnicki, OACIS GK-12, Department of Biology, UW

Garfield High School: Paul Spangenberg, Heather Snookal, Susan Brierly

Roosevelt High School: Margauex Isaman

West Seattle High School: Kevin Barth

Ballard High School: Megan Vogel

Orcas Island High School: Marta Branch

Seattle Academy of Arts and Sciences: Gabe Cronin and Thomas Adams

NOAA's Northwest Fisheries Science Center: Paul McElhany

Teri King, Washington Sea Grant

NSAPCS, PCSGA

